direct product, metabelian, supersoluble, monomial
Aliases: C3×C23⋊2D6, C62⋊10D4, C62.202C23, (C6×D4)⋊8C6, D6⋊5(C3×D4), D6⋊C4⋊14C6, (C6×D4)⋊10S3, (S3×C6)⋊18D4, (C2×C12)⋊15D6, C23⋊2(S3×C6), C6.49(C6×D4), (C22×C6)⋊4D6, (S3×C23)⋊5C6, C6.198(S3×D4), (C6×C12)⋊24C22, C32⋊10C22≀C2, (C2×C62)⋊4C22, C6.D4⋊10C6, (C6×Dic3)⋊18C22, (C2×C4)⋊2(S3×C6), (D4×C3×C6)⋊15C2, (C2×C6)⋊4(C3×D4), C2.25(C3×S3×D4), (C2×C12)⋊7(C2×C6), (C2×D4)⋊3(C3×S3), (C2×C3⋊D4)⋊4C6, (S3×C22×C6)⋊4C2, (C3×D6⋊C4)⋊35C2, C3⋊2(C3×C22≀C2), (C6×C3⋊D4)⋊18C2, (C22×C6)⋊4(C2×C6), C2.13(C6×C3⋊D4), C22⋊4(C3×C3⋊D4), C22.59(S3×C2×C6), (C2×C6)⋊13(C3⋊D4), (C2×Dic3)⋊2(C2×C6), (C3×C6).259(C2×D4), C6.150(C2×C3⋊D4), (S3×C2×C6).99C22, (C2×C6).57(C22×C6), (C3×C6.D4)⋊26C2, (C22×S3).26(C2×C6), (C2×C6).335(C22×S3), SmallGroup(288,708)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C23⋊2D6
G = < a,b,c,d,e,f | a3=b2=c2=d2=e6=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, ebe-1=bd=db, fbf=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 778 in 287 conjugacy classes, 74 normal (34 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, C32, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C2×D4, C2×D4, C24, C3×S3, C3×C6, C3×C6, C3×C6, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C22×C6, C22≀C2, C3×Dic3, C3×C12, S3×C6, S3×C6, C62, C62, C62, D6⋊C4, C6.D4, C3×C22⋊C4, C2×C3⋊D4, C6×D4, C6×D4, S3×C23, C23×C6, C6×Dic3, C3×C3⋊D4, C6×C12, D4×C32, S3×C2×C6, S3×C2×C6, C2×C62, C23⋊2D6, C3×C22≀C2, C3×D6⋊C4, C3×C6.D4, C6×C3⋊D4, D4×C3×C6, S3×C22×C6, C3×C23⋊2D6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, C3⋊D4, C3×D4, C22×S3, C22×C6, C22≀C2, S3×C6, S3×D4, C2×C3⋊D4, C6×D4, C3×C3⋊D4, S3×C2×C6, C23⋊2D6, C3×C22≀C2, C3×S3×D4, C6×C3⋊D4, C3×C23⋊2D6
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 47 45)(44 48 46)
(1 27)(2 21)(3 29)(4 23)(5 25)(6 19)(7 38)(8 31)(9 40)(10 33)(11 42)(12 35)(13 20)(14 28)(15 22)(16 30)(17 24)(18 26)(32 45)(34 47)(36 43)(37 48)(39 44)(41 46)
(1 4)(2 5)(3 6)(7 46)(8 47)(9 48)(10 43)(11 44)(12 45)(13 16)(14 17)(15 18)(19 29)(20 30)(21 25)(22 26)(23 27)(24 28)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 43)(8 44)(9 45)(10 46)(11 47)(12 48)(19 26)(20 27)(21 28)(22 29)(23 30)(24 25)(31 39)(32 40)(33 41)(34 42)(35 37)(36 38)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 35)(2 34)(3 33)(4 32)(5 31)(6 36)(7 29)(8 28)(9 27)(10 26)(11 25)(12 30)(13 37)(14 42)(15 41)(16 40)(17 39)(18 38)(19 46)(20 45)(21 44)(22 43)(23 48)(24 47)
G:=sub<Sym(48)| (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,27)(2,21)(3,29)(4,23)(5,25)(6,19)(7,38)(8,31)(9,40)(10,33)(11,42)(12,35)(13,20)(14,28)(15,22)(16,30)(17,24)(18,26)(32,45)(34,47)(36,43)(37,48)(39,44)(41,46), (1,4)(2,5)(3,6)(7,46)(8,47)(9,48)(10,43)(11,44)(12,45)(13,16)(14,17)(15,18)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,43)(8,44)(9,45)(10,46)(11,47)(12,48)(19,26)(20,27)(21,28)(22,29)(23,30)(24,25)(31,39)(32,40)(33,41)(34,42)(35,37)(36,38), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,35)(2,34)(3,33)(4,32)(5,31)(6,36)(7,29)(8,28)(9,27)(10,26)(11,25)(12,30)(13,37)(14,42)(15,41)(16,40)(17,39)(18,38)(19,46)(20,45)(21,44)(22,43)(23,48)(24,47)>;
G:=Group( (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,27)(2,21)(3,29)(4,23)(5,25)(6,19)(7,38)(8,31)(9,40)(10,33)(11,42)(12,35)(13,20)(14,28)(15,22)(16,30)(17,24)(18,26)(32,45)(34,47)(36,43)(37,48)(39,44)(41,46), (1,4)(2,5)(3,6)(7,46)(8,47)(9,48)(10,43)(11,44)(12,45)(13,16)(14,17)(15,18)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,43)(8,44)(9,45)(10,46)(11,47)(12,48)(19,26)(20,27)(21,28)(22,29)(23,30)(24,25)(31,39)(32,40)(33,41)(34,42)(35,37)(36,38), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,35)(2,34)(3,33)(4,32)(5,31)(6,36)(7,29)(8,28)(9,27)(10,26)(11,25)(12,30)(13,37)(14,42)(15,41)(16,40)(17,39)(18,38)(19,46)(20,45)(21,44)(22,43)(23,48)(24,47) );
G=PermutationGroup([[(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,47,45),(44,48,46)], [(1,27),(2,21),(3,29),(4,23),(5,25),(6,19),(7,38),(8,31),(9,40),(10,33),(11,42),(12,35),(13,20),(14,28),(15,22),(16,30),(17,24),(18,26),(32,45),(34,47),(36,43),(37,48),(39,44),(41,46)], [(1,4),(2,5),(3,6),(7,46),(8,47),(9,48),(10,43),(11,44),(12,45),(13,16),(14,17),(15,18),(19,29),(20,30),(21,25),(22,26),(23,27),(24,28),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,43),(8,44),(9,45),(10,46),(11,47),(12,48),(19,26),(20,27),(21,28),(22,29),(23,30),(24,25),(31,39),(32,40),(33,41),(34,42),(35,37),(36,38)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,35),(2,34),(3,33),(4,32),(5,31),(6,36),(7,29),(8,28),(9,27),(10,26),(11,25),(12,30),(13,37),(14,42),(15,41),(16,40),(17,39),(18,38),(19,46),(20,45),(21,44),(22,43),(23,48),(24,47)]])
72 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 6A | ··· | 6F | 6G | ··· | 6S | 6T | ··· | 6AG | 6AH | ··· | 6AO | 12A | ··· | 12H | 12I | 12J | 12K | 12L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 1 | 1 | 2 | 2 | 2 | 4 | 12 | 12 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 | 4 | ··· | 4 | 12 | 12 | 12 | 12 |
72 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | S3 | D4 | D4 | D6 | D6 | C3×S3 | C3×D4 | C3⋊D4 | C3×D4 | S3×C6 | S3×C6 | C3×C3⋊D4 | S3×D4 | C3×S3×D4 |
kernel | C3×C23⋊2D6 | C3×D6⋊C4 | C3×C6.D4 | C6×C3⋊D4 | D4×C3×C6 | S3×C22×C6 | C23⋊2D6 | D6⋊C4 | C6.D4 | C2×C3⋊D4 | C6×D4 | S3×C23 | C6×D4 | S3×C6 | C62 | C2×C12 | C22×C6 | C2×D4 | D6 | C2×C6 | C2×C6 | C2×C4 | C23 | C22 | C6 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 4 | 2 | 4 | 2 | 2 | 1 | 4 | 2 | 1 | 2 | 2 | 8 | 4 | 4 | 2 | 4 | 8 | 2 | 4 |
Matrix representation of C3×C23⋊2D6 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 5 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 10 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,5,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,9,0,0,0,0,0,0,3,0,0,0,0,0,0,12,10,0,0,0,0,0,1],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,9,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C3×C23⋊2D6 in GAP, Magma, Sage, TeX
C_3\times C_2^3\rtimes_2D_6
% in TeX
G:=Group("C3xC2^3:2D6");
// GroupNames label
G:=SmallGroup(288,708);
// by ID
G=gap.SmallGroup(288,708);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,590,555,9414]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=e^6=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations